UserMicrosoft Word - JAEBS-1947-11, khanJ. Appl. Environ. Biol. Sci., 7(3)87-101, 2017© 2017, TextRoad PublicationISSN: 2090-4274Journal of Applied Environmental and Biological Sciences www.textroad.comAnalytical Solution for Metallic Wire Coating Using Sisko Fluid FlowZeeshan Khan1, Haroon-Ur-Rasheed21Department of Mathematics, Abdul Wali Khan University, Mardan, KP, Pakistan2Department of Basic Sciences,University of Engineering and Technology Peshwawar, KP, PakistanReceived: October 16, 2016                                                                                                                                                                                              Accepted: January 28, 2017ABSTRACTThe present study explores the analytical analysis of MHD flow of a visco-elastic Sisko fluid arising in the wire coatinganalysis. A pressure type coating die is used for this purpose. The objective is to examine the effect of emerging parameters such as the power index (n), the radii ratio 8, the material parameter(A) and the speed of the wire Von the flow characteristics through graphs. The nonlinear equations are solved analytically by utilizing the Adomian Decomposition Method (ADM). Additionally, the Optimal Homotopy Asymptotic Method (OHAM) has been used to verify and strengthen the results obtained by ADM. The convergence of the series solution is established. For some special cases of the present work, a comparison with the previously published results has been presented.KEYWORDS: OHAM and ADM solutions, Sisko fluid, Wirecoating, Analytical solution.1. INTRODUCTIONNon-Newtonian fluids [1-4] have gained a deep interestby researchers because of its applications in industries likeoil, polymer, plastic, etc. Various models, both analytical and numerical, have been discussed in the study of non- Newtonian fluids. Fluids models are characterized by the underlying fluid grades such as second grade, third grade, etc., generalizing to n-grade fluids . It includes shear-thinning, shear-thickening, yields-stress, viscoelasticityetc. An individual case of indiscriminate Newtonian liquids known as Sisko model is considered . Themodelof the sisko fluid is used to envisage the Pseudoplastic and Dilatant performance. Although, prevailing use in industry and engineering little research work has been reportedin this area. Cobble et al.  investigated incompressible non- Newtonian fluid in orthogonal coordinates.Akyildiz at el.  studied the sisko fluid flow and gave an implicit differential equation. Siddiqui at el.  studied sisko fluid for Taylor’s scraping problem. Thin film of non- Newtonian fluid flow was studied by Siddiqui at al. .Wan et al.  investigated MHD sisko fluid.Khan et al.  studied the Sisko fluid in porous media.The Sisko fluid investigated by Abelman et al. in a rotating frame for Rayleigh problem. The MHD (magneto-hydrodynamic)flow of as sisko fluid is investigated numerically by Khan et al.  in an annular pipe.Different types of fluids are used for wire and fiber optics coating. The wire coating depends upon the temperature, geometry, fluid viscosity and polymer. It depends on the coating die, fluid viscosity, temperature of the wire and the molten polymer. Most relevant work on wire coatings are thus summarized in the following.Shah et al.  investigated wire coating analysis with linearly varying temperature. Han and Rao  carried out an analysis on wire coating extrusion. Non-Newtonian fluid model was used byAkter and Hashmi [16, 17] for wire coating. Siddiqui et al.  investigatedthe extrusion in wire coating in a pressurized type die. Fenner and Williams  investigated the coating flow in a pressurized die. Mitsoulis  studied the wire coating flow with heat transfer. Unsteady second grade fluid with oscillating boundary condition inside the wire coating die was investigated by Shah et al. . Exact solution was obtained for unsteady second grad fluid for wirecoating by Shah et al. . Oldroyd 8-constant fluid was used for wire coating analysis by Shah et al.. Shah et al.  studied wire coating using third grade fluid flow along with heat transfer analysis. Recently Sajid et al.  used Sisko fluid for wire coating analysis by applying HAM. Recently, Zeeshan et al.  used PhanThien Tanner fluid in double- layer optical fiber coating. The same author  investigated optical fiber coating using wet-on-wet coating process. In the process the authors have used PTT fluids of different viscosities for the constant pressure gradient. Zeeshan et al.  investigated an approximate solution for optical fiber coating in a pressure type die using two immiscible Oldroyd 8-constant fluids using OHAM. Flow and heat transfer of two immiscible fluids in double-layer optical fiber coating is investigated by Zeeshan et al. .*Corresponding Author: Zeeshan Khan, Department of Mathematics, Abdul Wali Khan University, Mardan, KP, PakistanKhan and Ur-Rasheed, 2017In scrutiny of the above incentive, in the present study, weanalyze the wire coating analysisusingSisko fluid flow inan annular die.Well known mathematical techniques, namelyADM and OHAM are used for a series solution. The ADM [30-33]is broadly used by the researchers to solvenonlinear problems. Additionally the results are also verified by using OHAM [21, 23, 24, 28, 34-36]. Further, the comparison of the present work and published work  is also made for clarity. The paper is organized as in the following.Section 2 presents formulation of the problem. Analysis of ADM is given in section 3. Section 4 is reserved for analysis of OHAM. ADM solution of the problem is given in Section 5.Section 6 and 7 are given for results and discussion and concluding remarks respectively.2. Modeling of the ProblemManufacturing process of wire coating is depicted in figure 1.A metallic wire is dragged with velocity V insidethe die of length L. The direction of the flow is represented along the z-axis and r are taken perpendicularto z, where Rw and Rd are radius of the wire and the die respectively.Figure1. Typical manufacturing process of wire.Figure2. Flow model in coating die.J. Appl. Environ. Biol. Sci., 7(3)87-101, 2017The continuity and momentum equations for incompressible flow are [8-10].w) 0,dw) ) .T.dtWith-1-2) ) ) ) ) 1n1 2T pI S ,S a b tr A A,-3 2 )A gradu gradu T . (4)) )here, w) , T , d dt , p , I , S, A , are the velocity, Stress tensor, the material time derivative, the pressure, the) )identity tensor, the extra stress tensor and First Revilin Erickson tensor, and T, a, bmaterial parameters respectively. Velocity and Stress fields are:are matrix transpose and the) ) ) )w 0, 0, w r  , S S r .In view of Eqs. (3)-(5), the governing equation for velocity field is as follows:-5) d 2 w)dw) )  dw) n dw) n1 d 2 w) a r b  nr 0.-6 dr 2dr  dr dr dr 2 Boundary conditions on the velocity arew) V for r R, And w) 0, for r R-7The average velocity as in [21-24] isR) 2 )wave 2 2 rwr dr.-8Rd Rw RThe volume flow rateat any control surface of the coating is [21-24]Q V R2 R2 .Where Re is thickness ofthe coated wire. The volume flow rate (flux) is[21-24]-9) Rd )Q rwr dr.RwFrom Eqs. (9) and (10), thickness of the coated wire is [21-24]-10)      ) 1R [R 2 2Rdrw(r)dr]2-11c w V RThe shear stress is) ) )) n1 )srz r R dw a bdr dw .dr-12w The total surface force on the wire is) )F 2πR LS .-13w rz rR wIn view of Eq. (14), Eqs. (6)-(13) can be reduced to the following set of non-dimensional equationsrespectively:Khan and Ur-Rasheed, 2017r* r w) R, w ,) 1, * b Vn1-14Rwd 2 w)dw)V Rw dw) n) w dw) n1 d 2 w) r  nr  0,-15dr2 dr dr dr dr2 w) 1 at r 1 and w) 0r -16) w)ave R2 R2 ) wave )2RwV rw1r dr,-19Q      Q      rw) r dr, 2 R2V-20w 1 12 R Rc 1 2 rw) r dr ,-21R w 1 ) ) ) ) nS Srz Rw dw dw ,-22rz r 1 V dr drr 1 ) ) nr 1F F dw dw ,-232 LV dr r 13. Analysis of AdomianDecomposition Method (ADM)ADM is an analytical technique for decomposing an unknown function into infinitely many components. For more understanding,we take the followingequation:w) r, t w)k r ,k 0To find the components w), w)0, w)1…,separately, decomposition method is used.2-24Consider the following nonlinear differential equation:) ) ) )Lr w) r Rw) r Nw) r G r ,-25) ) ) ) ) ) )Lr w r G r Rw r Nw r .-26) 2 ) ) )Here Lr r 2 is the linear operator, G r the source term, R r the remainder linear operator while Na nonlinear term.-1w) (r) isApplyingLron both side to the Eq. (26)) ) ) ) )L1L w) r L1 g r L1Rw) r L1 Nw) r ,-27r r r ) ) r ) ) rw) r f r L1Rw) r L1 Nw) r , (28)The function f r arising from)1Lr g r after using the conditions given in Eq. (16). The operatorL1 . drdr is used for second order differential equations.J. Appl. Environ. Biol. Sci., 7(3)87-101, 2017The series solution of w) r using ADM we have, ) )) )) ) )w r f r L1Rw r L1 Nw r ,-29 kk 0r kk 0r kk 0) In view of adomianpolynomials the nonlinear term N w)k r can be expressed ask 0) ) )N wk r Ak ,-30k 0 k 0where the components w), w)0, w)1, w)2, are determined as3) ) ) ) )1 )) ) ) )1 ) ) w) w w w w  f r Lr Rw0 w1 w2 w3 Lr NA0 A1 . (31)To determine the series components w), w)0, w)1, w)2, it should be noted that ADM suggest thatf(r) in fact3describe the zeroth component w) .0The recursive relation is defined as:w) r f0 r ,-32) )1) )1 ) w1 r Lr R w0r  LrA0 , (33)) )1) )1 ) w2 r Lr R w1r  LrA1 ,-34) )1) )1 ) w3 r Lr R w2r  LrA2 .-35By following the same process we can find the other terms.4. Analysis of Optimal HomotopyAsymptotic Method (OHAM)The OHAM method has been widely used for the solution of non-linear differential equations, particularly to those arising in Fluid Mechanics.Such equations often arise in non-Newtonian fluids where OHAM can be easily applied. For better understanding we consider) ) ) ) ) ) )A(w(r)) G(r) 0,r , B(w,dw )=0, r , dr-36With) ) )A=L N ,) )-37where, A , B , w) , and G(r) are differential operator, boundary operator, the unknown function, boundary ofthe domain and analytical function respectively.)In Eq. (38) the linear and nonlinear operator is represented by L and N respectively.We consider r, p : Λ0,1 R which satisfies) ) )) ) )) ) L wr  ) )  r p 1 p L(r, p) G r H p 0, Br, p,        ,    0.-38) ) ) N wr  G r ) ) )r )Where H prepresents the non-zero auxiliary function andr, pis the an unknown function. For p 0 ,Eq. (39) only recuperate the linear part of solution i.e., r, p) w)0 r ,L  r, 0 0, B ww) , 0 ,-39 0r Khan and Ur-Rasheed, 2017Forp) 1 , we recuperate the nonlinear boundary value problem and thissolution approachto the exact solutionsuch as r,1 w) r . So we can say that the solution <p(r, p)approaches to exact solution as p) approaches 0 to1H p isthe auxiliary function can be chosen as) ) ) ) 2 ) 3H p pC1 p C2 p C3 ...-40The auxiliary constants C1, C 2, C 3,..., are determined later to reduce solution inaccuracy. For estimated solution, r, p) is expanding with respect to p by using Taylor series[21, 23, 24, 28, 33-35].r, p),Ci w)0 r w)k r,Ci p) ,k1-41By usingEqs. (40) and(41) into equation (38), and comparing the coefficients ofthe same powers, of p) , we obtainseveral order problems. Eq. (39) gives the zeroth order problem.In the following, the first and second order problems are presented as:) ) ) ) )) ) )dw1L(w1 (r)) G(r) C1N0 (w0 (r)), B(w1, ) 0,dr-42) ) ) ) ) )) ) ) )) dw)L(w2 (r )) L (w1 (r )) C2 N0 (w0 (r )) C1[L(w1 (r )) N1 (w1 (r ))], B(w2 ,Generally the equation takes the form as,) 0.dr-43) ) ) )) ) k 1 ) )) ) ) )L(wk (r)) L(wk 1 (r)) Ck N0 (w0 (r)) Ci [L(wk 1 (r)) Nk 1 (w0 (r), w1 (r),..., wk 1 (r))],i1-44) ) )B(w , dwk ) 0, k 2, 3,...k dr) ) ) )) k 1 ) )Here Nk 1 (w0 (r ), w1 (r ),..., wk 1 (r )) is the coefficient of pin extension of N ((r, p)) .) ) ) )) ) ) )N ((r, p)) N0 (w0 (r)) Nk i (w0 , w1 ,..., wk i ).k i 1-45The junction of Eq. (41) depends upon the auxiliary constants and the order of the problem.If it converges atp) 1, one has:w) r, Ci w)0 r w)k r, Ci , ; i 1, 2, 3,..., m . (46)k 1Using Eq. (46) into Eq. (36), expression for the residual in the following is obtained as:) ) ) )R r,Ci L(w) r,Ci G r N w) r, Ci , i 1, 2,, m , (47)Several methods likeRitz Method,Galerkin’s Method, Method of Least Squares and the Collocation Method are used to find the auxiliary constants.Here we use the least squares method to find the auxiliary constant:J C b )R2 r, C dr,; i 1, 2, 3,..., m-48i ia)JCi 0, ;i 1,2,3,...,m,-49herea,b (taking from domain) are constant that locate auxiliary constants which minimize the residual. Manyresearchers [21, 23, 24, 28, 33-35]fruitfully implemented this methodforsolving highly non-linear boundary valueJ. Appl. Environ. Biol. Sci., 7(3)87-101, 2017problems of physicsand engineering and gained pleasingoutcome. As the number of the auxiliary constant increasethe solution errors, reduce and a consequence the solution of the problem converges to the exact solution.5. Solution to the ProblemThe analytical solution of Eq. (15) and (16) can be found by applying ADM. Following the same process of ADM given in section 3; the zeroth, first and second order solutions of the problem with respect to various values of power index nisgiven as:Zeroth, first and second order solution for n = 2respectively are:) r -50w0 1 ,) 1     r 1    ln r  1  r  ln  ,1 3-51w)2 1 (r ln r 2 5r ln 2 (10r 2 10r 3 5r 4 r 5 (5r 20r) 30r 2) ln r 22 1 6(20r 3 5r 4 6r 2 18r 2 18r 2 2 6r 3 2 2r3 4r3 2r 23 ) ln r2 (2r 8r 2 12r 3 8r 4 2r 5 10r) ln r ln (30r 2 30r 3 10r 4 12r 2 24r 2 212r 3 2 ) ln r ln (4r3 4r 23 ) ln r ln (r 2 2r 2 2 4 2r 4 5 r 5 55r 5 2 2 ) ln 2 5r 2 5 3 5r 3 5 4 2 5r 4 6 2 6r2 6 3 2 6r 3 2 23 2r3 2 23 2r 23 ) ln 2 .The total velocity for n = 2 is:-52) r 1 r 1 ln r 1 r ln 1 2 2w (r ln r 5r ln 1 1 32 1 6(10r 2 10r 3 5r 4 r 5 (5r 20r) 30r 2) ln r2 (20r 3 5r 4 6r 2 18r2 18r 2 2 6r 32 2r3 4r3 2r 23 ) ln r2 (2r 8r 2 12r 3 8r 4 2r 5 10r) ln r ln (30r 2 30r 3 10r 4 12r 2 24r 2 2 12r 3 2 ) ln r ln (4r3 4r 23 ) ln r ln (r 2 2r 2 2 4 2r 4 5 r 5 5 5r 5 2 2 ) ln 25r 2 5 3 5r 3 5 4 2 5r 4 6 2 6r 2 6 3 2 6r 3 2 2 3 2r 3 2 2 32r 23 ) ln 2 . (53)Zeroth, first and second order solution for n = 3respectively are:) r -54w0 1 ,1 2 r 1 ln r 1 r ln ) 1 4, (55)w)2 1 ((6r 24r 36r 2 24r 3 6r 4 6r 2 12r 2 6r 2 2 ) ln r2 1 7(24r 2 16r 3 4r 4 ln 3r 2 6r 2 3r 2 2 ) ln r2 (6r 18 2 18r 218 3 18r 3 6 4 6r 4 6 2 6r 2 6 2 2 6r 2 2 6) ln (2r 10r 220r 3 20r 4 10r 5 2r 6 8r 24r 2 24r 3 8r 4 6r 2 6r 2 2 ) ln r ln Khan and Ur-Rasheed, 2017( r 3 2 3r 2 2 32 2r 32 2 4 2r 4 3 5 3r 5 62 r 6 4 4r 2 4 2 4r 2 4 3 4r 3 4 4 4r 4 3 2 3r 2 3 2 2 3r 2 2 ) ln 2 . (56) The total velocity for n = 3 is:      1  2    r 1   ln r  1 r  ln              w) r 1 ((6r 11 42 1 724r 36r 2 24r 3 6r 4 6r 2 12r 2 6r 2 2 ) ln r (24r 2 16r 34r 4 ln 3r 2 6r 2 3r 2 2 ) ln r2 (6r 18 2 18r 2 18 3 18r 3 6 4 6r 4 6 2 6r 2 6 2 2 6r 2 2 6) ln (2r 10r 2 20r 3 20r 4 10r 5 2r 6 8r 24r 2 24r 3 8r 4 6r 2 6r 2 2 ) ln r ln (r 3 2 3r 2 2 32 2r 32 2 4 2r 4 3 5 3r 5 62 r 6 4 4r 2 4 2 4r 2 4 3 4r 3 4 4 4r 4 3 2 3r 2 3 2 2 3r 2 2 ) ln 2 . (57) Zeroth, first and second order solution for n = 4respectivelyare:) rw0 1 ,1 3 r 1 ln r 1 r ln ) ,1 1 5-58-59w)2 1 ((8r 40r 80r 2 80r 3 40r 4 8r 5 8r 2 16r 22 1 98r 22 ) ln r (r 8r 28r 2 56r 3 70r 4 56r 5 28r 6 8r 7 r 8 5r25r 50r 2 50r 3 25r 4 5r 5 4r 2 8r 2 4r 2 2 ) ln r2 (8 8r 32 2 32r 2 48 3 48r 3 32 4 32r 4 8 5 8r 5 8 2 8r 2 8 2 2 8r 22 ) ln (2r 14r 2 42r 3 70r 4 70r 5 42r 6 14r 72r 8 10r 40r 2 60r 3 40r 4 10r 5 8r 2 8r 2 2 ) ln r ln ( r 5 2 5r 2 9 3 9r 3 5 4 5r 4 5 5 5r 5 9 6 9r 6 5 7 5r 7 8r 8 5 5r 10 2 10r 2 10 4 10r 4 5 5 5r 5 4 2 4r 2 4 2 2 4r 2 2 ) ln 2 .The total velocity for n = 4.      1  3    r  1 ln r r 1 ln              -60w) r 1 ((8r 11 521 940r 80r 2 80r 3 40r 4 8r 5 8r 2 16r2 8r 22 ) ln r (r 8r 28r 2 56r 3 70r 4 56r 5 28r 6 8r 7 r 8 5r 25r 50r 250r 3 25r 4 5r 5 4r 2 8r 2 4r 22 ) ln r2 (8 8r 32 2 32r 2 48 3 48r 3 32 4 32r 4 8 5 8r 5 8 2 8r 2 8 2 28r 2 2 ) ln (2r 14r 2 42r 3 70r 4 70r 5 42r 6 14r 7 2r 8 10r40r 2 60r 3 40r 4 10r 5 8r2 8r 2 2 ) ln r ln ( r 5 2 5r 2 9 3 9r 3 5 4 5r 4 5 5 5r 5 9 6 9r 6 5 7 5r 7 82 r 8 5 5rJ. Appl. Environ. Biol. Sci., 7(3)87-101, 201710 2 10r 2 10 4 10r 4 5 5 5r 5 4 2 4r 2 4 2 2 4r 2 2 ) ln 2 . (61)6. RESULTS AND DISCUSSIONThe nonlinear equation () corresponding to the boundary conditions () and () has been solved analytically byutilizing the Adomian Decomposition Method for various numerical values of the physical parameters. Here, we include the discussion on an analytical basis obtained by ADM. Velocity profiles, shear stress, force on the total wire and thickness of the coated wire are displayed graphically. The effect of emerging parameters such as power law index, material parameter of Sisko fluid, radii ratio and the speed of the wire will be discussed in detail.Additionally, Newtonian (A = 0) and sisko (A 0) fluids are also compared.The convergence of the series solution is established in table 1. For the accuracy of ADM, a comparison of the present result is made with OHAM and the published work of Sajid et al.  as shown in table 2. The results are found in a very good agreement.Graphical comparisonof ADM and OHAM is shown in figure 3. The effects of material parameter Aandthe power index(n) on the velocity profile is depicted in figure4. In figure4, the velocity profile decreases as either of the power index or material parametervalue increases. The effect of material parameter Aonvelocityprofileis shown in figures 5-7 by taking three different values of n. These figures show the comparison between the Newtonian fluid (when A = 0) and the Sisko fluid (when A 0). It is also observed from these figures, that velocity profiles decreasessignificantly by increasingthe power index and material parameter values. The reduction in velocity when n = 4 is less than that of whenn = 2 and n = 3. This shows the shear-thickening occurrence of the underlying non- Newtonian fluid.Thickness of the coated wire is a function of material parameterA, the power index n and the radii ratio 8. Figures8- 10 illustrate the effect of these parameters on the thickness of the coated wire. Figure 8 shows the effects of the power index and material parameter on the thickness of coated wire. In this analysis, it is clear that the thickness of the coated wire increases as either the power index or material parameter increases. Figure 9 shows the effects of enlarging the material parameter and the power index by increasing the radii ratio on the thickness of coated wire. From this simulation, it is observed that the material parameter, power index and radii ratio significantly affects the thickness of coated wire. Figure 10 is drawn to see the impact of the radii ratio and the wire drawing speed on thickness of the coated wire. It is observed that, the increase in radii ratio significantly affects the thickness of coated wire. Also, it is investigated that by changing the wire drawing speed, less sensitivity in the change of wirecoating occurs.In this case when the radii ratio (especially when the diameter of the coating die) is small.Figures 11 and 12 display the impact of the power index and material parameter on the shear stress and the total force on the surface of the coated wire respectively. It is observed that the shear stress and the total force on the surface of coated wire exhibits a linear increase with increasing power index and material parameter.Figures 11 and 12 show the linear effect of power index and material parameter on the shear stress and total force on the surface of the wire with increasing power index and material parameter.Khan and Ur-Rasheed, 2017Figure 3. Velocity comparison of ADM and OHAM.Table 1. ADM error for 0.4, n 0.2, 2.r1st Order2nd Order1001.15.2413E-133.242E-141.20.1602E-101.028E-131.31.2012E-100.102E-121.44.1202E-111.246E-121.53.0234E-102.102E-121.62.1028E-111.812E-121.75.2139E-100.211E-121.81.0123E-110.224E-131.93.2450E-120.724E-1320.4535E-130.317E-14Table 2: Numerical comparison of velocity distribution between OHAM, ADM and Sajid et al.  when 0.4, n 0.2, 2.rOHAMADMSajid et al. 11111.10.012632420.012632420.012632421.20.036472820.036472820.036472801.30.028945260.028945250.028945141.40.0116072410.0116072400.0116072201.50.0104420450.0104420350.0104420121.60.0012524010.0012524000.0012524011.70.0060149810.0060149810.0060149811.80.0041016120.0041006320.0041006301.90.0002135200.0002135200.0002135212.00.0000124210.0000124210.000012420J. Appl. Environ. Biol. Sci., 7(3)87-101, 2017Fig. 4. Effect on dimensionless velocity profiles for different values of power index n when 8 = 2, A = 0.2.Fig. 5. Dimensionless velocity profiles by taking different values of material parameter A when 8 = 2, n = 2.Fig. 6. Dimensionless velocity profiles by taking different values of material parameter A when 8 = 2, n = 3.Khan and Ur-Rasheed, 2017Fig. 7. Effect on dimensionless velocity profiles by taking various values of material parameter A when 8 = 2, n = 4.Fig. 8. Thickness of the coated wire for the different values of the power index n verses A when 8 = 2.Fig. 9. Effect on the thickness of the coated wire for different values of the power index n andmaterial parameter A when 8 = 2.J. Appl. Environ. Biol. Sci., 7(3)87-101, 2017Fig. 10. Effect on the thickness of the coated wire for the different values of the radii ratio 8 versesspeed of wire V when A = 0.2.Fig. 11. Effect of the power index n and material parameter A on the shear stress on the bare wire surface when 8 = 2.Fig. 12. Effects of power index n and material parameter A on the total force on the surface of coated wire when 8 = 2.Khan and Ur-Rasheed, 20177. ConclusionThe wire coating analysis in pressure type coating die is investigated using Sisko fluid as a coating material. Thenonlinear differential equation is solved by ADM. The consequences are also verified by OHAM. The effect of emerging parameters is discussed and sketched. Velocity profile decreases with increasing power index n and material parameter A. The velocity profile for Newtonian fluid (A = 0) is much greater than the Sisko fluid (A 0). It is also observed that the thickness of the coated wire significantly depends on the power index n, die radius, material parameter A, radii ratio and the wire drawing speed V. Also the shear stress and total force on the surface of coated wire increases with power index and material parameter.REFERENCES C. Fetecau, C. Fetecau, “Starting solutions for the motion of a second grade fluid due to longitudinal andtorsional oscillations of a circular cylinder”, Int.J. Eng. Sci. 44 (2006) 788-796. C. Fetecau, C. Fetecau, “Starting solutions for some unsteady unidirectional flows of a second grade fluid”, Int. J. Eng. Sci. 43 (2005) 781-789. W. C. Tan, T. Masuoka, “Stokes' first problem for a second grade fluid in a porous half space with heated boundary”, Int. J. Non-Linear Mech. 40 (2005) 512-522. W.C. Tan, T. Masuoka, “Stability analysis of a Maxwell fluid in a porous medium heated from below”, Phys. Lett. A 360 (2007) 454-460. A. W.Sisko, The flow of lubricating greases, Ind. Eng. Chem. Res., 50 (1958) 1789-1792 . M. H. Cobble, P. R. Smith, G. P. Mulholland, Nonlinear motion equations for a non-Newtonian incompressible fluid in orthogonal coordinates system, Rheol. Acta, 12 (1973) 122-216. T.Akyildiz, et al., Implicit differential equation arising in the steady flow of a Sisko fluid, Appl. Math.Comput., 210 (2009) 189-196. A. M. Siddiqui., et al., On Tauylor’sscrapimg equation problem and flow of a Sisko fluid, Math. Model.Anal., 14 (2009) 515-529. A. M. Siddiqui, M. Ahmad, Q. K. Ghori, thin film flow of non-Newtonain fluids on a moving belt, Chaos, Solitons and Fractals, 33 (2007) 1006-1016. Y. Wang. et al., Magneto-hydrodynamic peristaltic motion of a Sisko fluid in a symmetric or asymmetric channel, Physics A, 387 (2008) 347-362. Y.Aksoy, M. Khan, Z. Abbas, T. Hayat, Analytic solution for flow of Sisko fluid through a porous medium, Transp. Porous Med., 71 (2008) 23-37. Abelman, T. Hayat, E. Momoniat, On the Rayleigh problem for a Sisko fluid in a rotating frame, Appl.Math. Comput, 215 (2009) 2515-2520. A. M. Khan, Q. Abbas, K. Duru, Magneto-hydrodynamic flow of a Sisko fluid in an annular pipe: A numerical study, Int. J. Numer. Methods Fluids, 62 (2010) 1169-1180. R. A. Shah, S. Islam, A. M. Siddiqui, T. Haroon, “Heat transfer by laminar flow of an elastico-viscous fluid in post treatment analysis of wire coating with linearly varying temperature along the coated wire”, journal of heat and mass transfer, 48(2012) 903-914. C.D Han and D. Rao, The rheology of wire coating extrusion, Polymer engineering and science, 18(13) (1978), 1019-1029. S. Akter and M.S.J. Hashmi, Analysis of polymer flow in a canonical coating unit: power law approach, Prog. Org. Coat. 37 (1999), 15-22. S. Akter and M.S.J. Hashmi, Plasto-hydrodynamic pressure distribution in a tepered geometry wire coating unit, in: Proceedings of the 14th Conference of the Irish manufacturing committee (IMC14), Dublin, (1997) 331-340. A.M. Siddiqui, T. Haroon and H. Khan, Wire coating extrusion in a Pressure-type Die in flow of a third grade fluid, Int. J. of Non-linear Sci. and Numeric. Simul.10(2) (2009) 247-257. R.T. Fenner and J.G. Williams, Analytical methods of wire coating die design, Trans. Plast. Inst. (London), 35 (1967), 701-706. E. Mitsoulis, fluid flow and heat transfer in wire coating, Ad. Poly. Tech. 6(4) (1986), 467-487. R. A.Shah, S. Islam., A. M. Siddiqui, T. Haroon., Optimal homotopy asymptotic method solution of unsteady second grade fluid in wire coating analysis, J. Ksiam 15 (3) (2011) 201–222. R. A. Shah, S. Islam., A. M. Siddiqui, T. Haroon., Exact solution of differential equation arising in the wire coating analysis of an unsteady second grad fluid, Math. And Comp. Mod. 57 (2013) 1284-1288.J. Appl. Environ. Biol. Sci., 7(3)87-101, 2017 R. A. Shah, S. Islam., A. M. Siddiqui, T. Haroon, Wire coating analysis with oldroyd 8-constant fluid byoptimal homotopy asymptotic method, 63 (2012) 695-707. R. A. Shah, S. Islam, M. Ellahi, T. Haroon, and A. M. Siddiqui, Analytical solutions for heat transfer flows of a third Grade fluid in case of post-treatment of wire coating, International Journal of the Physical Sciences, 6(2011) 4213-4223. M. Sajid and T. Hayat, Wire coating analysis by withdrawal from a bath of Sisko fluid, Applied Mathematics and Computation, 199 (2008) 13-22. Zeeshan, R. A. Shah, S. Islam, A. M. Siddique, Double-layer Optical Fiber Coating Using Viscoelastic PhanThien Tanner Fluid, New York Science Journal 6 (2013) 66-73. Zeeshan, S. Islam, R. A. Shah, I. Khan, T. Gul, Exact Solution of PTT Fluid in Optical Fiber Coating Analysis using Two-layer Coating Flow, J. Appl. Environ. Biol. Sci., 5(2015) 96-105. Zeeshan, S. Islam, R. A. Shah, I. Khan, T. Gul, P. Gaskel, Double-layer Optical Fiber Coating Analysis by Withdrawal from a Bath of Oldroyd 8-constant Fluid”, J. Appl. Environ. Biol. Sci., 5(2015) 36-51. Zeeshan, S. Islam, R. A. Shah, I. Khan, flow and heat transfer of two immiscible fluids in double layer optical fiber coating, DOI :10.1007/s11998-016-9817-1. G. Adomian, A Review of the Decomposition Method and Some Recent Results for Non-Linear Equations, Math Comput. Model. 13 (1992)287–299. A. M. Wazwaz, Adomian Decomposition Method for a Reliable Treatment of the Bratu-Type Equations, Appl. Math. Comput. 166 (2005)652–663. A. M. Wazwaz, Adomian Decomposition Method for a Reliable Treatment of the Emden–Fowler Equation, Appl. Math. Comput. 161 (2005)543–560. T. Gul, R. A. Shah, S. Islam, M. Arif, MHD Thin Film Flows of a Third Grade Fluid on a Vertical Belt With Slip Boundary Conditions, J Appl Math: Article ID 14: 707286 (2013). V. Marinca, N.Herisanu, I.Nemes, Optimal Homotopy Asymptotic Method with application to thin film flow, Cent. Eur. J. Phys. 6(3) (2008) 648-653. V. Marinca, N.Herisanu, Application of Optimal Homotopy Asymptotic Method for solving non-linear equations arising in heat transfer, International communications in heat and mass transfer 35(2008) 710- 715. V. Marinca, N.Herisanu, C. Bota, B. Marinca, An OptimalHomotopy Asymptotic Method applied to the steady flow of a fourth grade fluid past a porous plate. Applied Mathematics letters 22 (2009)245-251.