Constructing the Minimal Steiner Tree Inside Simple Polygon

Alireza Khosravinejad¹, Alireza Bagheri²

¹Department of Computer Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
²Department of Computer Engineering and Information Technology Amirkabir University of Technology, Tehran, Iran

© 2013, TextRoad Publication

ABSTRACT

The Steiner tree problem has numerous applications in urban transportation network, design of electronic integrated circuits, and computer network routing. This problem aims at finding a minimum Steiner tree in the Euclidean space, the distance between each two edges of which has the least cost. This problem is considered as an NP-hard one. Assuming the simple polygon P with m vertices and n terminals, the purpose of the minimum Steiner tree in the Euclidean space is to connect the n terminals existing in p. In the proposed algorithm, obtaining optimal responses will be sought by turning this problem into the Steiner tree problem on a graph.

KEYWORDS: Euclidean minimum steiner tree, Delaunay triangulation, Steiner tree in graph.

1. INTRODUCTION

The Steiner tree problem has applications in scientific and commercial fields such as computer networks, design of electronic integrated circuits, and computer network routing. This problem aims at finding a minimum Steiner tree in the Euclidean space, the distance between each two edges of which has the least cost. This problem is considered as an NP-hard one. Assuming the simple polygon P with m vertices and n terminals, the purpose of the minimum Steiner tree in the Euclidean space is to connect the n terminals existing in p. In the proposed algorithm, obtaining optimal responses will be sought by turning this problem into the Steiner tree problem on a graph.

1. Construction of the Steiner tree for three points

Torricelli came up with a solution for three points in 1640 [6]. In this solution, the three points are labeled A, B, and C. If we connect them, we have a triangle. If we build three equilateral triangles outside of the ABC triangle, each of which has AB, AC, and BC as one of its sides and we inscribe each of these triangles within a circle, we will have Figure 1.

Figure 1. Torricelli’s solution for three points
The intersection point of these three circles is the Steiner point we seek which is called the Torricelli point [7]. In 1750, Simpson presented another solution in order to find the Torricelli point [7]. Similar to the previous method, the equilateral triangles outside of the ABC triangle are built. Afterward, the Simpson line is drawn between the vertices of the equilateral triangles. The intersection point of these three lines is the Torricelli point [6]. See Figure 2.

Figure 2. Simpson’s solution for three points

The Steiner point is obtained from the intersection of three edges in Figure 2 which are at an angle of 120 degrees with each other. This condition is called the angular condition of the Steiner point (Figure 3).

Figure 3. The edges connected to the Steiner point are at an angle of 120 degrees with one another.

3. The Proposed Algorithm

The proposed algorithm includes 3 steps:

Step 1: The set of terminals and vertices of the polygon of Figure 4-a are triangulated using the triangulation algorithm [8]. The result is Figure 4-b.

Figure 4. Triangulation of the set of vertices and terminals of the polygon

Step 2: In each triangle constructed in the previous step whose angles are less than 120 degrees, we obtain the Steiner point using Torricelli or Simpson method (Figure 5).

Figure 5. The Steiner point obtained in each triangle

Step 3: We obtain the Steiner tree on the graph using the algorithm of Milan et al. [9] (Figure 6).
4. Calculation Results

The proposed algorithm was implemented using the Delphi programming language. The experiments were conducted using examples from Soukup [5]. A convex polygon was considered around all terminals. In Table 1, a number of the implemented results are compared with optimum results demonstrating the fact that the proposed algorithm has presented acceptable results.

Table 1. Our algorithm compared to Soukup’s examples

<table>
<thead>
<tr>
<th>Example Number</th>
<th>Optimum result</th>
<th>Our proposed algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX.2</td>
<td>150.05</td>
<td>150.50</td>
</tr>
<tr>
<td>EX.2A</td>
<td>207.77</td>
<td>208.03</td>
</tr>
<tr>
<td>EX.3</td>
<td>159.88</td>
<td>159.88</td>
</tr>
<tr>
<td>EX.11</td>
<td>382.80</td>
<td>382.80</td>
</tr>
<tr>
<td>EX.15</td>
<td>50.329</td>
<td>51.24</td>
</tr>
<tr>
<td>EX.23</td>
<td>76.603</td>
<td>77.43</td>
</tr>
<tr>
<td>EX.30</td>
<td>193.95</td>
<td>193.99</td>
</tr>
</tbody>
</table>

5. Conclusion

In this paper, the proposed algorithm is able to solve the Steiner tree problem within a simple polygon on the Euclidean plane. The calculation results of the mentioned algorithm are easy in terms of implementation and they lead to acceptable results.

REFERENCES